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Trusted Platform Modules (TPMs)
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– TPM specifications were developed by the Trusted Computing Group

– TPMs are used as a cryptographic engine in various computers

– Over a billion TPMs have been shipped 

– A number of major applications, e.g. Microsoft BitLocker, FIDO and 
Secure Boot

– ISO/IEC 11889

– Two versions of TPMs: 
– TPM v1.2, supporting limited algorithms

– TPM v2.0, supporting algorithm agility



Why is algorithm agility 
necessary?



Cryptographic algorithms in TPM 1.2
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TPM 1.2 only supports a few cryptographic algorithms

– One hash algorithm –
SHA1 (also used for HMAC)

– One asymmetric algorithm –
RSA (for encryption and signature)

– One specially designed privacy-preserving signature algorithm –
DAA (direct anonymous attestation)

– AES (not included in the early versions) and 
one-time-pad with XOR



Necessary Changes to TPM 1.2
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The following are views on 2005 ……

– SHA1: signs of weakness and it is being deprecated
– NIST and ISO’s action to respond

– Different geographies want different algorithms to be available
– Nobody trusts anybody else’s algorithms

– Support the shift from RSA to ECC for asymmetric cryptography

– World’s infrastructures still use a lot of RSA 
– It was expected that change was happening 



TCG’s Reaction: Algorithm Agility in TPM 2.0
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Each primitive can be implemented with different algorithms

– Mandatory algorithms:
– RSA encryption and signature
– ECC encryption and signature
– ECC-DAA (RSA-DAA is no longer supported)
– SHA-1 (not for signatures), SHA-256 and HMAC
– AES and one-time-pad with XOR

– TCG Algorithm Registry

– Manufacturer can add any algorithms, e.g., 
– China: SM2, SM3, SM4
– Banks: Triple DES



How to achieve algorithm agility?



A naïve solution
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– Each algorithm is implemented individually with specific commands

Any problem with this solution?

– Inflexible: many TPM versions are not compatible to each other

– Bad manageability: the specification can be too complex

– Bad performance: TPMs need to figure out which algorithm to perform

– Too expensive: it is not affordable



The TCG solution
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– Each primitive is implemented with multiple choices of algorithms
– Multiple algorithms share the same set of TPM commands

Example: TPM2_Sign() 
– RSA signature
– ECDSA
– EC-Schnorr
– SM2
– ECDAA

– CL-ECDAA
– q-SDH-ECDAA

– …...



What does this paper introduce?



Overview of TPM 2.0 Functionalities
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TPM commands for key handling:–
– TPM2_Create() 

– TPM2_Load()

TPM commands for cryptographic algorithms:–
– TPM2_Commit()

– TPM2_Sign()

– TPM2_ECDH_KeyGen()

– TPM2_ECDH_ZGen()



Overview of TPM 2.0 Key Structures 
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TPM key structure: keys are stored in a hey hierarchy

– key.name – external identity 

– key.handle – internal identity

– key.blob – (tsk)ek||tpk||macmk((tsk)ek||tpk.name); (ek, mk) = kdf(parentK)
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Known ECC Cryptographic Use Cases for the TPM 2.0 
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– Conventional digital signatures 

– Direct Anonymous Attestation (DAA)  

– DAA with attributes (DAA-A) 

– U-Prove 

– Key exchange



New ECC Use Cases for the TPM 2.0 
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Asymmetric encryption 

(Key Encapsulation Mechanism – KEM) 

Four algorithms specified in ISO/IEC 18033-2:

– ECIES (Elliptic Curve Integrated Encryption Scheme) 

– PSEC (Provably Secure Elliptic Curve encryption)   

– ACE (Advanced Cryptographic Engine)  

– FACE (Fast ACE)  



ECIES (Elliptic Curve Integrated Encryption Scheme)
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KEM.KeyGen(q,G) KEM.Encrypt(pk) KEM.Decrypt(sk, C) 

ECIES 

x ∈ [1,q)
Y = [x]G
sk ← x
pk ← Y
Return (pk, sk) 

r ∈ [1, q)
C = [r]G 
D = [r]Y
K = kdf(C||D) 
Return (K, C) 

D = [x]C
K = kdf(C||D) 
Return K 

– In KEM.KeyGen(), perform 

– choose a parentK, run TPM2_Create(), return key.blob
(ek, mk) = kdf(parentK); (x)ek||Y||macmk((x)ek||key.name)   

– In KEM.Decrypt(), perform

– TPM2_Load(key.blob)

– TPM2_ECDH_ZGen(C), return [x]C



FACE (Fast Advanced Cryptographic Engine)
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– In KEM.KeyGen(), call

– TPM2_Create() 4 time to get [x1]G, [x2]G, [y1]G, [y2]G

– TPM2_ECDH_KeyGen() twice to get G1 and G2

– TPM2_ECDH_ZGen() 4 times to get [x1]G1, [x2]G2, [y1]G1, [y2]G2 

– In KEM.Decrypt(), call TPM2_ECDH_ZGen() 4 time to get 

X1 = [x1]U1, X2 = [x2]U2, Y1 = [y1]U1, Y2 = [y2]U2

KEM.KeyGen(q,G1) KEM.Encrypt(pk) KEM.Decrypt(sk, C) 

F
A
C
E 

a1,a2 ∈[0,q)
G1 = [a1]G
G2 = [a2]G
x1,x2,y1,y2 ∈ [0,q) 
C = [x1]G1 + [x2]G2
D = [y1]G1 + [y2]G2
sk ← (x1, x2, y1, y2) 
pk ← (C,D) 
Return (pk, sk) 

r ∈ [0, q)
U1 = [r]G1
U2 = [r]G2
α = hash(U1 || U2) 
r′ = α·r mod q 
V = [r]C + [r′]D 
K || T = kdf(V ) 
C = U1 || U2 || T 
Return (K, C) 

Parse C = U1 || U2 || T
α = hash(U1 || U2)
t1 = x1 + y1 · α mod q 
t2 = x2 + y2 · α mod q 
V = t1·U1 + t2·U2
K || T′ = kdf(V) 
Return K, if T = T′ 
Otherwise, return Fail 



Discussion on
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– Limitations of algorithm agility, for EC digital signatures

– ECDSA, EC-GDSA, EC-KCDSA, EC-RDSA, SM2

– TPM implementation of these algorithms are not much integrated

– Compatibility issue
– EC-Schnorr in ISO/IEC 14888-3, ISO/IEC 11889, BSI TR-03111 and New 

TCG proposal are not compatible 

– Performance 
– difficult to provide meaningful performance measurements for TPM 



What does this paper not cover?

Rigorous security analysis



Thank you!
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